Microbial Genetics (Ch 8)
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Major genetic pathways
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Bidirectional replication
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Simultaneous transcription + translation
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Operons

Intro to lac operon:

Operon lecture video:


https://www.youtube.com/watch?v=oBwtxdI1zvk
https://www.youtube.com/watch?v=10YWgqmAEsQ

Operon model:
Negative inducible
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Structure of the operon. The operon consists of the promoter (P) and
operator (O) sites and structural genes that code for the protein. The

operon is regulated by the product of the regulatory gene (/).
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e Repressor inactive, operon on. When the inducer allolactose binds
to the repressor protein, the inactivated repressor can no longer block
transcription. The structural genes are transcribed, ultimately resulting
in the production of the enzymes needed for lactose catabolism.
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Structure of the operon. The operon consists of the
promoter (P) operator (O) sites and structural genes that
code for the protein. The operon is regulated by the
product of the regulatory gene (/).
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Operon model:
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(@) Lactose present, glucose scarce (cAMP level high). If glucose is scarce,
the high level of cAMP activates CAP, and the lac operon produces large
amounts of mRNA for lactose digestion.
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(b) Lactose present, glucose present (CAMP level low). When glucose is
present, cAMP is scarce, and CAP is unable to stimulate transcription.
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Paper on other regulated genes:
Toledo-Arana et al. 2009



Mutations
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Ultraviolet light Mutations

@ Exposure to ultraviolet light causes adjacent thymines to become cross-linked,
forming a thymine dimer and disrupting their normal base pairing.

Thymine dimer
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© DNA polymerase fills the gap by synthesizing new DNA, using the intact strand as a template.
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© DNA ligase seals the remaining gap by joining the old and new DNA.
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Ames test for mutagens
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Cyclophosphamide:
a nitrogen mustard
alkylating agent

en.wikipedia.org



Griffith’s experiment: a sigh of recombination
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€@ Living nonencapsulated
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Transformation

Recipient cell
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Conjugation
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Phage protein coat OMBINA Re CO m b i n a t i O n :
Transduction

Bacterial chromosome

© A phage infects the donor bacterial cell.

@ Phage DNA and proteins are made, and the bacterial chromosome is broken into pieces.

© Occasionally during phage assembly, pieces of bacterial DNA are packaged in a phage
capsid. Then the donor cell lyses and releases phage particles containing bacterial DNA.

b
X
DNA /%«—n

O A phage carrying bacterial DNA infects a new host cell, the recipient cell.

Bacterial
DNA Recipient
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Donor bacterial ¢ Recipient bacterial
DNA DNA

© Recombination can occur, producing a recombinant cell with a genotype
different from both the donor and recipient cells.
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Operon model

Fig. 8.13
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