Principles of Disease and Epidemiology | Table 14.1 | Representative Normal Microbiota by Body | Region | |-----------------------|---|--| | Region | Principal Components | Comments | | Skin | Propionibacterium, Staphylococcus, Corynebacterium,
Micrococcus, Acinetobacter, Brevibacterium; Pityrosporum
(fungus), Candida (fungus), Malassezia (fungus) | Most of the microbes in direct contact with skin do not become residents because secretions from sweat and oil glands have antimicrobial properties. Keratin is a resistant barrier, and the low pH of the skin inhibits many microbes. The skin also has a relatively low moisture content. | | Eyes
(Conjunctiva) | Staphylococcus epidermidis, S. aureus, diphtheroids, Propionibacterium, Corynebacterium, streptococci, Micrococcus Nose and throat (upper respiratory system) Eyes (conjunctive system) Skin Large intestitution of the control | ne
ver | | Table 14.1 | (continued) | | |---|--|--| | Region | Principal Components | Comments | | Nose and
Throat (Upper
Respiratory
System) | Staphylococcus aureus, S. epidermidis, and aerobic diphtheroids in the nose; S. epidermidis, S. aureus, diphtheroids, Streptococcus pneumoniae, Haemophilus, and Neisseria in the throat | Although some normal microbiota are potential pathogens, their ability to cause disease is reduced by microbial antagonism. Nasal secretions kill or inhibit many microbes, and mucus and ciliary action remove many microbes. | | Mouth | Streptococcus, Lactobacillus, Actinomyces, Bacteroides,
Veillonella, Neisseria, Haemophilis, Fusobacterium, Treponema,
Staphylococcus, Corynebacterium, and Candida (fungus) | Abundant moisture, warmth, and the constant presence of food make the mouth an ideal environment that supports very large and diverse microbial populations on the tongue, cheeks, teeth, and gums. However, biting, chewing, tongue movements, and salivary flow dislodge microbes. Saliva contains several antimicrobial substances. | | Large
Intestine | Escherichia coli, Bacteroides, Fusobacterium, Lactobacillus,
Enterococcus, Bifidobacterium, Enterobacter, Citrobacter,
Proteus, Klebsiella, Candida (fungus) | The large intestine contains the largest numbers of resident microbiota in the body because of its available moisture and nutrients. Mucus and periodic shedding of the lining prevent many microbes from attaching to the lining of the gastrointestinal tract, and the mucosa produces several antimicrobiol chemicals. Diarrhea also flushes out some of the normal microbiota. | | Urinary and
Reproductive
Systems | Staphylococcus, Micrococcus, Enterococcus, Lactobacillus, Bacteroides, aerobic diphtheroids, Pseudomonas, Klebsiella, and Proteus in urethra; lactobacilli, Streptococcus, Clostridium, Candida albicans (fungus), and Trichomonas vaginalis (protozoan) in vagina | The lower urethra in both sexes has a resident population; the vagina has its acid-tolerant population of microbes because of the nature of its secretions. Mucus and periodic shedding of the lining prevent microbes from attaching to the lining; urine flow mechanically removes microbes, and the pH of urine and urea are antimicrobial. Cilia and mucus expel microbes from the cervix of the uterus into the vagina, and the acidity of the vagina inhibits or kills microbes. | | Table 14.1 | (continued) | | |---|--|--| | Region | Principal Components | Comments | | Nose and
Throat (Upper
Respiratory
System) | Staphylococcus aureus, S. epidermidis, and aerobic diphtheroids in the nose; S. epidermidis, S. aureus, diphtheroids, Streptococcus pneumoniae, Haemophilus, and Neisseria in the throat | Although some normal microbiota are potential pathogens, their ability to cause disease is reduced by microbial antagonism. Nasal secretions kill or inhibit many microbes, and mucus and ciliary action remove many microbes. | | Mouth | Streptococcus, Lactobacillus, Actinomyces, Bacteroides,
Veillonella, Neisseria, Haemophilis, Fusobacterium, Treponema,
Staphylococcus, Corynebacterium, and Candida (fungus) | Abundant moisture, warmth, and the constant presence of food make the mouth an ideal environment that supports very large and diverse microbial populations on the tongue, cheeks, teeth, and gums. However, biting, chewing, tongue movements, and salivary flow dislodge microbes. Saliva contains several antimicrobial substances. | | Large
Intestine | Escherichia coli, Bacteroides, Fusobacterium, Lactobacillus,
Enterococcus, Bifidobacterium, Enterobacter, Citrobacter,
Proteus, Klebsiella, Candida (fungus) | The large intestine contains the largest numbers of resident microbiota in the body because of its available moisture and nutrients. Mucus and periodic shedding of the lining prevent many microbes from attaching to the lining of the gastrointestinal tract, and the mucosa produces several antimicrobiol chemicals. Diarrhea also flushes out some of the normal microbiota. | | Urinary and
Reproductive
Systems | Staphylococcus, Micrococcus, Enterococcus, Lactobacillus, Bacteroides, aerobic diphtheroids, Pseudomonas, Klebsiella, and Proteus in urethra; lactobacilli, Streptococcus, Clostridium, Candida albicans (fungus), and Trichomonas vaginalis (protozoan) in vagina | The lower urethra in both sexes has a resident population; the vagina has its acid-tolerant population of microbes because of the nature of its secretions. Mucus and periodic shedding of the lining prevent microbes from attaching to the lining; urine flow mechanically removes microbes, and the pH of urine and urea are antimicrobial. Cilia and mucus expel microbes from the cervix of the uterus into the vagina, and the acidity of the vagina inhibits or kills microbes. | # Terminology | Tabl | | | |------|--|--| | | | | **Selected Zoonoses** | Disease | Causative Agent | Reservoir | Transmission Due To | Chapter
Reference | |---|---|--------------------------------------|---|----------------------| | Viral | | | | | | Influenza (some types) | Influenzavirus | Swine, birds | Direct contact | 24 | | Rabies | Lyssavirus | Bats, skunks, foxes, dogs, raccoons | Direct contact (bite) | 22 | | West Nile encephalitis | lest Nile encephalitis Flavivirus Horses, birds Aedes and Culex mosquito bite | | Aedes and Culex mosquito bite | 22 | | Hantavirus pulmonary syndrome | Hantavirus | Rodents (primarily deer mice) | Direct contact with rodent saliva, feces, or urine | 23 | | Bacterial | | | | | | Anthrax | Bacillus anthracis | Domestic livestock | Direct contact with contaminated hides or animals; air; food | 23 | | Brucellosis | Brucella spp. | Domestic livestock | Direct contact with contaminated milk, meat, or animals | 23 | | Plague | Yersinia pestis | Rodents | Flea bites | 23 | | Cat-scratch disease | Bartonella henselae | Domestic cats | Direct contact | 23 | | Ehrlichiosis | Ehrlichia spp. | Deer, rodents | Tick bites | 23 | | Leptospirosis | Leptospira | Wild mammals, domestic dogs and cats | Direct contact with urine, soil, water | 26 | | Lyme disease Borrelia burgdorferi Field mice Tick bites | | Tick bites | 23 | | | Psittacosis (ornithosis) | Chlamydophila psittaci | Birds, especially parrots | Direct contact | 24 | | Rocky Mountain spotted fever | Rickettsia rickettsii | Rodents | Tick bites | 23 | | Salmonellosis | Salmonella enterica | Poultry, reptiles | Ingestion of contaminated food and water and putting hands in mouth | 25 | | Endemic typhus | Rickettsia typhi | Rodents | Flea bites | 23 | | Fungal | | | | | | Ringworm | Trichophyton
Microsporum
Epidermophyton | Domestic mammals | Direct contact; fomites (nonliving objects) | 21 | | Protozoan | | | | | | Malaria | Plasmodium spp. | Monkeys | Anopheles mosquito bite | 23 | | Toxoplasmosis | Toxoplasma gondii | Cats and other mammals | Ingestion of contaminated meat or by direct contact with infected tissues or fecal matter | 23 | | Helminthic | | | | | | Tapeworm (pork) | Taenia solium | Pigs | Ingestion of undercooked contaminated pork | 25 | | Trichinellosis | Trichinella spiralis | Pigs, bears | Ingestion of undercooked contaminated pork | 25 | (a) Lyme disease cases, 1992–2007 Copyright @ 2010 Pearson Education, Inc. (c) Reported tuberculosis cases, 1948–2007 (a) Lyme disease cases, 1992-2007 (c) Reported tuberculosis cases, 1948-2007 Copyright @ 2010 Pearson Education, Inc. (b) Lyme disease by month, 2007