What's 1n a Cell?
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Figure 4.1 Arrangements of cocci.
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Figure 4.2 Bacilli.




Figure 4.3 A double-stranded helix formed by Bacillus subtilis.




Figure 4.4 Spiral bacteria.




Figure 4.5 Star-shaped and rectangular prokaryotes.
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Figure 4.7 Arrangements of bacterial flagella.
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Figure 4.8 The structure of a prokaryotic flagellum.
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Figure 4.13a Bacterial cell walls.
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Figure 4.13b Bacterial cell walls.
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Figure 4.13c Bacterial cell walls.
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Figure 4.13 Bacterial cell walls.
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Figure 4.14 Plasma membrane.
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Figure 4.16 The principle of simple diffusion.
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Figure 4.18 The principle of osmosis.
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E. coli in pure water:

« What is likely to move into or out

of the cell?

e What can the cell do about 1t?



Figure 4.20 Magnetosomes.
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Figure 4.21 Formation of endospores by sporulation.




Ancient endospores
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Characterization of Ancient DNA Supports Long-Term
Survival of Haloarchaea

Krithivasan Sankaranarayanan, Tim K. Lowenstein,® Michael N. Timofeeff?
Brian A. Schubert* and J. Koji Lum'#>

Abstract

Bacteria and archaea isolated from crystals of halite 10* to 10° years old suggest long-term survival of
halophilic microorganisms, but the results are controversial. Independent verification of the authenticity of
reputed living prokaryotes in ancient salt is required because of the high potential for environmental and
laboratory contamination. Low success rates of prokaryote cultivation from ancient halite, however, hamper
direct replication experiments. In such cases, culture-independent approaches that use the polymerase chain
reaction (PCR) and sequencing of 16S ribosomal DNA are a robust alternative. Here, we use amplification,
cloning, and sequencing of 16S ribosomal DNA to investigate the authenticity of halophilic archaea cultured
from subsurface halite, Death Valley, California, 22,000 to 34.000 years old. We recovered 16S ribosomal DNA
sequences that are identical, or nearly so (>99%), to two strains, Natronomonas DV462A and Halorubrum
DV427, which were previously isolated from the same halite interval. These results provide the best inde-
pendent support to date for the long-term survival of halophilic archaea in ancient halite. PCR-based approaches




Ancient endospores
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Clostridium botulinum is a strict anaerobe; that is, it is
Killed by the molecular oxygen (O2) present in air. People
can die of botulism from eating foods in which C.

botulinum is growing.

« How does this bacterium survive on plants picked for

human consumption?

« Why are home-canned foods most often the source of

botulism?

(Tortora, 11t ed., p. 110)



Figure 4.27 Mitochondria.




Figure 4.28 Chloroplasts.




TABLE 10.2 Prokaryotic Cells and Eukaryotic Organelles Compared

DNA

Histones

First Amino Acid in
Protein Synthesis
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Growth
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Prokaryotic Cell

o

One circular; some two circular;

some linear
In archaea

Formylmethionine (bacteria)
Methionine (archaea)

705

Binary fission

Eukaryotic Cell

Linear

Vf_u)

=3

Methionine

Eukaryotic Organelles
(Mitochondria and Chloroplasts)

Circular

No

Formylmethionine

705

Binary fission




Applications of Microbiology 4.1 Mixotricha, a protozoan that lives in the termite gut.




Applications of Microbiology 4.2 Arrangements of bacteria on the surfaces of two protozoans.

(a)
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Termite gut symbionts:
https.//www.youtube.com/watch?v=HOXx
/SDdIlqyU



https://www.youtube.com/watch?v=HOx7SDdIqyU
https://www.youtube.com/watch?v=HOx7SDdIqyU
https://www.youtube.com/watch?v=HOx7SDdIqyU

Termite gut symbionts
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Termite gut symbionts
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